MATH2050C Assignment 4

Deadline: Feb 5, 2024.
Hand in: 3.2 no. 14b, 16d; 3.3 no. 5, 12c; Suppl Problems no 1, 2, 3.
Section 3.2 no. 14ab, 16bd, 19bd;
Section 3.3 no. 3, 5, 7, 10, 12ac.

Supplementary Problems

1. Suppose that $\lim _{n \rightarrow \infty} x_{n}=x$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=x
$$

2. Determine the limit of

$$
\left(1-\frac{a}{n^{2}}\right)^{n}, a>0 .
$$

Hint: Use Bernoulli's inequality.
3. Show the limit of $(1-a / n)^{n}, a>0$ is equal to $1 / E(a)$. Hint: Use (2).
4. Prove that e is irrational. Hint: Use the inequality $0<e-\left(1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{k!}\right)<\frac{1}{k \times k!}$.

See next page for more.

The Exponential

First we note the following more detailed form of Theorem 3.2.11.
Theorem 3.2.11' let $\left\{x_{n}\right\}$ be a sequence of positive numbers such that $\lim _{n \rightarrow \infty} x_{n+1} / x_{n}=L \in$ $[0,1)$. Then $\lim _{n \rightarrow \infty} x_{n}=0$ and there is some M such that

$$
x_{1}+x_{2}+\cdots+x_{n} \leq M, \quad \forall n
$$

Proof Fix $\gamma, 0 \leq L<\gamma<1$. For $\varepsilon=\gamma-L>0$, there is some n_{0} such that $x_{n+1} / x_{n} \leq \gamma$ for all $n \geq n_{0}$. Therefore,

$$
0<x_{n+1} \leq \gamma x_{n} \leq \gamma^{2} x_{n-1} \leq \cdots \leq \gamma^{n-n_{0}+1} x_{n_{0}}
$$

which implies $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ by Squeeze Theorem. Furthermore,

$$
x_{n_{0}}+x_{n_{0}+1} \cdots+x_{n} \leq x_{n_{0}}+\gamma x_{n_{0}}+\cdots+\gamma^{n-n_{0}} x_{n_{0}} \leq \frac{x_{n_{0}}}{1-\gamma} \equiv M
$$

Theorem For $a>0$, the sequence $x_{n}=(1+a / n)^{n}$ is strictly increasing and bounded from above. Consequently,

$$
\lim _{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{n}
$$

exists.
Proof By binomial theorem,

$$
\begin{aligned}
x_{n}= & 1+n \frac{a}{n}+\frac{n(n-1)}{2!} \frac{a^{2}}{n^{2}}+\cdots+\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!} \frac{a^{k}}{k!}+\cdots+\frac{a^{n}}{n^{n}} \\
= & 1+a+\frac{1}{2!}\left(1-\frac{1}{n}\right) a^{2}+\cdots+\frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right) a^{k}+ \\
& \cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{n-1}{n}\right) a^{n} .
\end{aligned}
$$

x_{n+1} is obtained by replacing the n 's in the formula above by $n+1$. By a term by term comparison, we see that $x_{n}<x_{n+1}$, that is, $\left\{x_{n}\right\}$ is strictly increasing. Next, from this formula we also have

$$
x_{n}<1+a+\frac{a^{2}}{2!}+\cdots+\frac{a^{n}}{n!} .
$$

By Theorem 3.2.11' above, $a^{n+1} /(n+1)!\times n!/ a^{n}=a /(n+1) \rightarrow 0$ as $n \rightarrow \infty$, we conclude that there is some M such that $1+a+\frac{a^{2}}{2!}+\cdots+\frac{a^{n}}{n!} \leq M$ for all n. By Monotone Convergence Theorem the limit of x_{n} exists and is equal to its supremum.
For $a \geq 0$, we define a function $E(a)$ by setting

$$
E(a)=\lim _{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{n}
$$

We also write $e=E(1)$ and call it the exponential. e and π are two of the most important constants in science.

Theorem For each k,

$$
0<e-\left(1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{k!}\right) \leq \frac{1}{k \times k!}
$$

Proof From the proof above, for $k<n$,

$$
\begin{aligned}
0 & <\left(1+\frac{a}{n}\right)^{n}-\left(1+a+\frac{1}{2!} a^{2}+\frac{1}{3!} a^{3} \cdots+\frac{1}{k!} a^{k}\right) \\
& <\frac{a^{k}}{k!}\left(\frac{a}{k+1}+\frac{a^{2}}{(k+2)(k+1)}+\frac{a^{3}}{(k+3)(k+2)(k+1)}+\cdots\right) \\
& <\frac{a^{k}}{k!}\left(\frac{a}{k+1}+\frac{a^{2}}{(k+1)^{2}}+\frac{a^{3}}{(k+1)^{3}}+\cdots\right) \\
& =\frac{a^{k}}{k!} \frac{a}{k+1} \frac{1}{1-a /(k+1)} \\
& =\frac{a^{k+1}}{k!} \frac{1}{k+1-a},
\end{aligned}
$$

and the result follows by taking $a=1$.

